Abstract
We have experimentally investigated the impact of vertical and lateral scaling on low-field electron mobility (µ) in InAlN/GaN high-electron-mobility transistors (HEMTs). It is found that µ reduces as InAlN barrier (TB) and gate length (LG) scale down but increases with the scaled source–drain distance (LSD). Polarization Coulomb Field (PCF) scattering is believed to account for the scaling-dependent electron mobility characteristic. The polarization charge distribution is modulated with the vertical and lateral scaling, resulting in the changes in µ limited by PCF scattering. The mobility characteristic shows that PCF scattering should be considered when devices scale down, which is significant for the device design and performance improvement for RF applications.
Funder
NASA International Space Station
United States Air Force Office of Scientific Research
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献