Unmanned Aerial System and Machine Learning Techniques Help to Detect Dead Woody Components in a Tropical Dry Forest

Author:

Campos-Vargas Carlos,Sanchez-Azofeifa ArturoORCID,Laakso KatiORCID,Marzahn PhilipORCID

Abstract

Background and Objectives: Increased frequency and intensity of drought events are predicted to occur throughout the world because of climate change. These extreme climate events result in higher tree mortality and fraction of dead woody components, phenomena that are currently being reported worldwide as critical indicators of the impacts of climate change on forest diversity and function. In this paper, we assess the accuracy and processing times of ten machine learning (ML) techniques, applied to multispectral unmanned aerial vehicle (UAV) data to detect dead canopy woody components. Materials and Methods: This work was conducted on five secondary dry forest plots located at the Santa Rosa National Park Environmental Monitoring Super Site, Costa Rica. Results: The coverage of dead woody components at the selected secondary dry forest plots was estimated to range from 4.8% to 16.1%, with no differences between the successional stages. Of the ten ML techniques, the support vector machine with radial kernel (SVMR) and random forests (RF) provided the highest accuracies (0.982 vs. 0.98, respectively). Of these two ML algorithms, the processing time of SVMR was longer than the processing time of RF (8735.64 s vs. 989 s). Conclusions: Our results demonstrate that it is feasible to detect and quantify dead woody components, such as dead stands and fallen trees, using a combination of high-resolution UAV data and ML algorithms. Using this technology, accuracy values higher than 95% were achieved. However, it is important to account for a series of factors, such as the optimization of the tuning parameters of the ML algorithms, the environmental conditions and the time of the UAV data acquisition.

Funder

Inter-American Institute for Global Change Research

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

1. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems;Masson-Delmotte,2019

2. Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America

3. When can we expect extremely high surface temperatures?

4. Biomass resilience of Neotropical secondary forests

5. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3