Abstract
The objective of this study is to extend the possibilities of robot localization in a known environment by using the pre-deployed infrastructure of a smart building. The proposed method demonstrates a concept of a Shared Sensory System for the automated guided vehicles (AGVs), when already existing camera hardware of a building can be utilized for position detection of marked devices. This approach extends surveillance cameras capabilities creating a general sensory system for localization of active (automated) or passive devices in a smart building. The application is presented using both simulations and experiments for a common corridor of a building. The advantages and disadvantages are stated. We analyze the impact of the captured frame’s resolution on the processing speed while also using multiple cameras to improve the accuracy of localization. The proposed methodology in which we use the surveillance cameras in a stand-alone way or in a support role for the AGVs to be localized in the environment has a huge potential utilization in the future smart buildings and cities. The available infrastructure is used to provide additional features for the building control unit, such as awareness of the position of the robots without the need to obtain this data directly from the robots, which would lower the cost of the robots themselves. On the other hand, the information about the location of a robot may be transferred bidirectionally between robots and the building control system to improve the overall safety and reliability of the system.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献