Determining the Optimal Number of Ground Control Points for Varying Study Sites through Accuracy Evaluation of Unmanned Aerial System-Based 3D Point Clouds and Digital Surface Models

Author:

Yu Jae Jin,Kim Dong Woo,Lee Eun Jung,Son Seung Woo

Abstract

The rapid development of drone technologies, such as unmanned aerial systems (UASs) and unmanned aerial vehicles (UAVs), has led to the widespread application of three-dimensional (3D) point clouds and digital surface models (DSMs). Due to the number of UAS technology applications across many fields, studies on the verification of the accuracy of image processing results have increased. In previous studies, the optimal number of ground control points (GCPs) was determined for a specific area of a study site by increasing or decreasing the amount of GCPs. However, these studies were mainly conducted in a single study site, and the results were not compared with those from various study sites. In this study, to determine the optimal number of GCPs for modeling multiple areas, the accuracy of 3D point clouds and DSMs were analyzed in three study sites with different areas according to the number of GCPs. The results showed that the optimal number of GCPs was 12 for small and medium sites (7 and 39 ha) and 18 for the large sites (342 ha) based on the overall accuracy. If these results are used for UAV image processing in the future, accurate modeling will be possible with minimal effort in GCPs.

Funder

Korea Environment Institute

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference61 articles.

1. Evaluation of DSM Accuracy Based on UAS with Respect to Camera Calibration Methods and Application of Interior Orientation Parameters;Yu;Korean J. Remote Sens.,2017

2. Analysis of urban surface temperature change during heat wave using UAV thermal infrared camera;Kim;J.A.K.G.,2019

3. Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires

4. Digital ortho-images — a powerful tool for the extraction of spatial- and geo-information

5. Multi-image matching for DSM generation from IKONOS imagery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3