Tree Species Diversity Mapping—Success Stories and Possible Ways Forward

Author:

Immitzer Markus1ORCID,Atzberger Clement1ORCID

Affiliation:

1. Institute of Geomatics, Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria

Abstract

The special issue “Tree species diversity mapping” presents research focused on the remote assessment of tree species diversity, using different sensor modalities and platforms. The special issue thereby recognizes that the continued loss of biodiversity poses a great challenge to humanity. Precise and regularly updated baseline information is urgently needed, which is difficult, using field inventories, especially on a large scale. On such scales, remote sensing methods excel. The work presented in the special issue demonstrates the great potential of Earth Observation (EO) for addressing knowledge gaps, as EO provides rich (spectral) information at high revisit frequencies and spatial resolutions. Many tree species can be distinguished well using optical data, in particular, when simultaneously leveraging both the spectral and temporal dimensions. A combination with other sensor modalities can further improve performance. EO approaches are, however, limited by the availability of high-quality reference information. This complicates the task as the collection of field data is labor and time-consuming. To mitigate this limiting factor, resources should be better shared amongst the community. The reliance on in situ data also highlights the need to focus research on the extraction of more permanent (i.e., species-inherent) properties. In this respect, we identify and discuss some inherent limitations of current approaches regarding tree species discrimination. To this end, we offer a more fundamental view on tree species classification based on physical principles. To provide both a summary of the special issue and some stimulating thoughts about possible future research directions, we structured the present communication into four parts. We first introduce the need for biodiversity information, followed by a summary of all 19 articles published within the special issue. The articles are ordered by the number of species investigated. Next, we provide a short summary of the main outputs. To stimulate further research and discussion within the scientific community, we conclude this communication by offering a more fundamental view on tree species classification based on EO data and its biophysical foundations. In particular, we purport that species can possibly be more robustly identified if we classify/identify them in the biophysical feature space and not in the spectral-temporal feature space. This involves the creation and inversion of so-called physically-based radiative transfer models (RTM), which take hyper/multispectral observations together with their observation geometry (as well as other priors), and project these into biophysical variables such as chlorophyll content and LAI etc. The perceived advantage of such an approach is that the generalizability (and scalability) of EO based classifications will increase, as the temporal trajectory of species in the biophysical parameter space is probably more robust compared to the sole analysis of spectral data, which—amongst other perturbing factors—also depend on site/time specific illumination geometry.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. (2019). IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES Secretariat.

2. (2023, March 26). UNEP UN Biodiversity Conference (COP 15). Available online: http://www.unep.org/un-biodiversity-conference-cop-15.

3. Satellite Remote Sensing, Biodiversity Research and Conservation of the Future;Pettorelli;Phil. Trans. R Soc. B,2014

4. Agree on Biodiversity Metrics to Track from Space;Skidmore;Nature,2015

5. Recent Advances in Space-Borne Optical Remote Sensing Systems for Monitoring Global Terrestrial Ecosystems;Dash;Prog. Phys. Geogr. Earth Environ.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3