Satellite remote sensing, biodiversity research and conservation of the future

Author:

Pettorelli Nathalie1,Safi Kamran23,Turner Woody4

Affiliation:

1. Zoological Society of London, Institute of Zoology, Regent's Park, London NW1 4RY, UK

2. Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany

3. Department of Biology, University of Konstanz, Konstanz 78464, Germany

4. Earth Science Division, NASA, Washington, DC, USA

Abstract

Assessing and predicting ecosystem responses to global environmental change and its impacts on human well-being are high priority targets for the scientific community. The potential for synergies between remote sensing science and ecology, especially satellite remote sensing and conservation biology, has been highlighted by many in the past. Yet, the two research communities have only recently begun to coordinate their agendas. Such synchronization is the key to improving the potential for satellite data effectively to support future environmental management decision-making processes. With this themed issue, we aim to illustrate how integrating remote sensing into ecological research promotes a better understanding of the mechanisms shaping current changes in biodiversity patterns and improves conservation efforts. Added benefits include fostering innovation, generating new research directions in both disciplines and the development of new satellite remote sensing products.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference47 articles.

1. A safe operating space for humanity

2. The sixth extinction crisis: loss of animal populations and species;Ceballos G;J. Cosmol.,2010

3. Biodiversity loss and its impact on humanity

4. What Is Conservation Biology?

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3