Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems

Author:

Dash Jadunandan,Ogutu Booker O.1

Affiliation:

1. University of Southampton, UK

Abstract

Since the launch of the first Landsat satellite in the early 1970s, the field of space-borne optical remote sensing has made significant progress. Advances have been made in all aspects of optical remote sensing data, including improved spatial, temporal, spectral and radiometric resolutions, which have increased the uptake of these data by wider scientific communities. Flagship satellite missions such as NASA’s Terra and Aqua and ESA’s Envisat with their high temporal (<3days) and spectral (15–36 bands) resolutions opened new opportunities for routine monitoring of various aspects of terrestrial ecosystems at the global scale and have provided greater understanding of critical biophysical processes in the terrestrial ecosystem. The launch of new satellite sensors such as Landsat 8 and the European Space Agency’s Copernicus Sentinel missions (e.g. Sentinel 2 with improved spatial resolution (10–60 m) and potential revisit time of five days) is set to revolutionise the availability and use of remote sensing data in global terrestrial ecosystem monitoring. Furthermore, the recent move towards use of constellations of nanosatellites (e.g. the Flock missions by Planet Labs) to collect on-demand high spatial and temporal resolution optical remote sensing data would enable uptake of these data for operational monitoring. As a result of increase in data availability, optical remote sensing data are now increasingly used to support a number of operational services (e.g. land monitoring, atmosphere monitoring and climate change studies). However, many challenges still remain in exploiting the growing volume of optical remote sensing data to monitor global terrestrial ecosystems. These challenges include ensuring the highest data quality both in terms of the sensitivity of sensors and the derived biophysical products, affordability and availability of the data and continuity of data acquisition. This review provides an overview of the developments in space-borne optical remote sensing in the past decade and discusses a selection of aspects of global terrestrial ecosystems where the data are currently used. It concludes by highlighting some of the challenges and opportunities of using optical remote sensing data in monitoring global terrestrial ecosystems.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3