Dynamical Field Inference and Supersymmetry

Author:

Westerkamp Margret,Ovchinnikov IgorORCID,Frank PhilippORCID,Enßlin TorstenORCID

Abstract

Knowledge on evolving physical fields is of paramount importance in science, technology, and economics. Dynamical field inference (DFI) addresses the problem of reconstructing a stochastically-driven, dynamically-evolving field from finite data. It relies on information field theory (IFT), the information theory for fields. Here, the relations of DFI, IFT, and the recently developed supersymmetric theory of stochastics (STS) are established in a pedagogical discussion. In IFT, field expectation values can be calculated from the partition function of the full space-time inference problem. The partition function of the inference problem invokes a functional Dirac function to guarantee the dynamics, as well as a field-dependent functional determinant, to establish proper normalization, both impeding the necessary evaluation of the path integral over all field configurations. STS replaces these problematic expressions via the introduction of fermionic ghost and bosonic Lagrange fields, respectively. The action of these fields has a supersymmetry, which means there exists an exchange operation between bosons and fermions that leaves the system invariant. In contrast to this, measurements of the dynamical fields do not adhere to this supersymmetry. The supersymmetry can also be broken spontaneously, in which case the system evolves chaotically. This affects the predictability of the system and thereby makes DFI more challenging. We investigate the interplay of measurement constraints with the non-linear chaotic dynamics of a simplified, illustrative system with the help of Feynman diagrams and show that the Fermionic corrections are essential to obtain the correct posterior statistics over system trajectories.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference45 articles.

1. Computation of cosmic-ray acceleration by ito’s stochastic differential equations;Krülls;Astron. Astrophys.,1994

2. An Introduction to Stochastic Processes with Applications to Biology;Allen,2010

3. Handbook of Stochastic Methods;Gardiner,1985

4. Stochastic Differential Equations and Applications;Mao,2007

5. The pricing of options and corporate liabilities;Black,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3