Information Field Theory and Artificial Intelligence

Author:

Enßlin TorstenORCID

Abstract

Information field theory (IFT), the information theory for fields, is a mathematical framework for signal reconstruction and non-parametric inverse problems. Artificial intelligence (AI) and machine learning (ML) aim at generating intelligent systems, including such for perception, cognition, and learning. This overlaps with IFT, which is designed to address perception, reasoning, and inference tasks. Here, the relation between concepts and tools in IFT and those in AI and ML research are discussed. In the context of IFT, fields denote physical quantities that change continuously as a function of space (and time) and information theory refers to Bayesian probabilistic logic equipped with the associated entropic information measures. Reconstructing a signal with IFT is a computational problem similar to training a generative neural network (GNN) in ML. In this paper, the process of inference in IFT is reformulated in terms of GNN training. In contrast to classical neural networks, IFT based GNNs can operate without pre-training thanks to incorporating expert knowledge into their architecture. Furthermore, the cross-fertilization of variational inference methods used in IFT and ML are discussed. These discussions suggest that IFT is well suited to address many problems in AI and ML research and application.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The first spatio-spectral Bayesian imaging of SN1006 in X-rays;Astronomy & Astrophysics;2024-04

2. Reconstructing Galactic magnetic fields from local measurements for backtracking ultra-high-energy cosmic rays;Astronomy & Astrophysics;2024-01

3. Inferring Evidence from Nested Sampling Data via Information Field Theory;The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering;2023-12-13

4. Physics-informed information field theory for modeling physical systems with uncertainty quantification;Journal of Computational Physics;2023-08

5. Towards Moment-Constrained Causal Modeling;MaxEnt 2022;2022-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3