Mechanical Properties of Basalt Fiber Reinforced Cemented Silty Sand: Laboratory Tests, Statistical Analysis and Microscopic Mechanism

Author:

Sun Shuang1ORCID,Liu Hanbing2,Shi Chenglin1ORCID,Xu Lina1ORCID,Sui Yongqiang3

Affiliation:

1. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China

2. College of Transportation, Jilin University, Changchun 130012, China

3. Haiwei Engineering Construction Co., Ltd., of Fhec of CCCC, Beijing 101119, China

Abstract

Benefiting from low cost, high tensile strength, chemical stability, and great resistance to temperature, alkaline, and acids, it is a reasonable and valuable technology to use basalt fiber (BF) as an admixture to optimize building materials. So far, the challenge is still to master the engineering performance of BF-reinforced materials, especially poor subgrade soils. To this end, this paper carried out a series of unconfined compressive strength (UCS) tests, splitting tensile strength (STS) tests, and scanning environmental microscope (SEM) tests to study the mechanical properties and microstructure mechanism of BF-reinforced subgrade cemented silty sand with different fiber contents and curing times. The aims of this research were: (i) the UCS and STS of basalt fiber reinforced uncemented silty sand (BFUSM) and basalt fiber reinforced cemented silty sand (BFCSM) both increased with the increase of curing time and the strength reached the maximum value after curing for 28 days; (ii) the optimal fiber content was 0.2%, and a good linear correlation existed between UCS and STS; (iii) from the microscopic point of view, the combination of BF and cement could combine the physical action of fiber reinforcement and the chemical action of cement hydration reaction to form a fiber-cement-soil skeleton structure to improve the strength of silty sand and the improvement effect after working together was better than separately incorporated BF or cement; and (iv) the corresponding developed multiple nonlinear regression (MNLR) models which can well predict UCS and STS of BFUSM and BFCSM were established.

Funder

Jilin Provincial Department of Education Scientific Research Project

Graduate Innovation Fund of Jilin University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3