Author:
Jiang Tong,Zhao Jin-di,Zhang Jun-ran
Abstract
AbstractThe tensile strength of loess is closely related to geological disasters. As eco-friendly materials, biopolymers have an excellent strengthening effect on the mechanical properties of soil. The effect of different initial dry densities and xanthan gum (XG) contents on the microstructure and mechanical behavior of XG-treated loess was studied with a series of microscopic tests and splitting tensile tests based on the particle image velocimetry technique. The results show that the XG became concentrated and agglomerated during dehydration, forming bridge links between soil particles and covering their surfaces. The XG-treated loess had a significant concentration of micropores and mesopores, with greater peak pore size distribution values than untreated loess. The specimens’ load–displacement curves with different XG contents and initial dry densities showed strain-softening. The displacement vector field indicated that specimens’ primary cracks were radial–vertical, and the secondary cracks were well-developed. The strain-softening phenomenon was more significant with increased XG content and initial dry density, and the specimens’ splitting tensile strength and brittleness increased. XG treatment gave the soils stronger cementation and a denser structure, helping to increase strength and brittleness. This research provides a scientific basis and practical experience for applying XG in geotechnical engineering.
Funder
National Natural Science Foundation of China
the Foundation for University Key Teacher by the Ministry of Education of Henan Province
the Key Scientific Research Projects of Colleges and Universities in Henan Province
the Doctoral Student Innovation Foundation of NCWU
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Mu, Q. Y., Zhou, C. & Ng, C. W. W. Compression and wetting induced volumetric behavior of loess: Macro- and micro-investigations. Transp. Geotech. 23, 100345 (2020).
2. Pan, L., Zhu, J. G. & Zhang, Y. F. Evaluation of structural strength and parameters of collapsible loess. Int. J. Geomech. 21, 04021066 (2021).
3. He, S. X., Bai, H. B. & Xu, Z. W. Evaluation on tensile behavior characteristics of undisturbed loess. Energies 11, 1974 (2018).
4. He, S. X. & Bai, H. B. Elastic-plastic behavior of compacted loess under direct and cyclic tension. Adv. Mater. Sci. Eng. 2019, 1–12 (2019).
5. Wu, X. Y., Niu, F. J., Liang, Q. G. & Li, G. Y. Study on tensile strength and tensile-shear coupling mechanism of loess around Lanzhou and Yanan city in china by unconfined penetration test. KSCE J. Civ. Eng. 23, 1–12 (2019).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献