Unconfined Compressive Strength and Splitting Tensile Strength of Lime Soil Modified by Nano Clay and Polypropylene Fiber

Author:

Jiang PingORCID,Zhou Lin,Zhang Weiqing,Wang WeiORCID,Li NaORCID

Abstract

Here we study the effects of nano clay and polypropylene fiber on the unconfined compression and splitting properties of lime soil. Through a series of unconfined compressive strength (UCS) tests and splitting strength (STS) tests, the mechanical properties of lime soil (LS), nano clay modified lime soil (NLS), fiber modified lime soil (FLS), nano clay and fiber composite modified lime soil (NFLS) are analyzed, and the volume calculation formula of each phase in NFLS is deduced. Nano clay content αn, porosity volume η and lime volume LVi as independent variables, and the prediction models of UCS and STS of NFLS were established. Furthermore, the microstructure of LS, NLS, FLS and NFLS was analyzed by scanning electron microscope (SEM). It can be concluded that (1) with the increase in nano clay content, the UCS and STS of LS and FLS gradually increase. With the increase in fiber content, the UCS of LS first increases and then decreases, while the UCS and STS of NLS and STS of LS increase with the increase in fiber content, and the optimal fiber content is 0.75%. (2) UCS and STS of NFLS and η/LVi meet the linear relationship. The empirical formulas of UCS and STS established in this paper have a prediction accuracy of less than 10%. The strength of NFLS can be predicted according to the dry density of the sample and the content of each component material. (3) Nano clay can fill the pores of LS and promote the pozzolanic reaction between lime and soil, while fiber mainly plays a reinforcing role in LS, so as to improve the UCS and STS of LS. In NFLS, nano clay can improve the interfacial properties between fiber and LS, so as to improve its UCS and STS. This study can provide a reference for the modification technology of lime soil.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3