Incorporating Empirical Orthogonal Function Analysis into Machine Learning Models for Streamflow Prediction

Author:

Wu Yajie,Chen Yuan,Tian Yong

Abstract

Machine learning (ML) models have been widely used to predict streamflow. However, limited by the high dimensionality and training difficulty, high-resolution gridded climate datasets have rarely been used to build ML-based streamflow models. In this study, we developed a general modeling framework that applied empirical orthogonal function (EOF) analysis to extract information from gridded climate datasets for building ML-based streamflow prediction models. Four classic ML methods, namely, support vector regression (SVR), multilayer perceptron (MLP), long short-term memory (LSTM) and gradient boosting regression tree (GBRT), were incorporated into the modeling framework for performance evaluation and comparison. We applied the modeling framework to the upper Heihe River Basin (UHRB) to simulate a historical 22-year period of daily streamflow. The modeling results demonstrated that EOF analysis could extract the spatial information from the gridded climate datasets for streamflow prediction. All four selected ML models captured the temporal variations in the streamflow and reproduced the daily hydrographs. In particular, the GBRT model outperformed the other three models in terms of streamflow prediction accuracy in the testing period. The R2, RMSE, MAE, NSE and PBIAS were equal to 0.68, 9.40 m3/s, 5.18 m3/s, 0.68 and −0.03 for the daily streamflow in the Taolai River Watershed of the UHRB, respectively. Additionally, the LSTM method could provide physically based hydrological explanations of climate predicators in streamflow generation. Therefore, this study demonstrated the unique capability and functionality of incorporating EOF analysis into ML models for streamflow prediction, which could make better use of the readily available gridded climate data in hydrological simulations.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3