Feature Extraction from Satellite-Derived Hydroclimate Data: Assessing Impacts on Various Neural Networks for Multi-Step Ahead Streamflow Prediction

Author:

Ghobadi Fatemeh1ORCID,Tayerani Charmchi Amir Saman1,Kang Doosun1

Affiliation:

1. Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea

Abstract

Enhancing the generalization capability of time-series models for streamflow prediction using dimensionality reduction (DR) techniques remains a major challenge in water resources management (WRM). In this study, we investigated eight DR techniques and their effectiveness in mitigating the curse of dimensionality, which hinders the performance of machine learning (ML) algorithms in the field of WRM. Our study delves into the most non-linear unsupervised representative DR techniques, including principal component analysis (PCA), kernel PCA (KPCA), multi-dimensional scaling (MDS), isometric mapping (ISOMAP), locally linear embedding (LLE), t-distributed stochastic neighbor embedding (t-SNE), Laplacian eigenmaps (LE), and autoencoder (AE), examining their effectiveness in multi-step ahead (MSA) streamflow prediction. In this study, we conducted a conceptual comparison of these techniques. Subsequently, we focused on their performance in four different case studies in the USA. Moreover, we assessed the quality of the transformed feature spaces in terms of the MSA streamflow prediction improvement. Through our investigation, we gained valuable insights into the performance of different DR techniques within linear/dense/convolutional neural network (CNN)/long short-term memory neural network (LSTM) and autoregressive LSTM (AR-LSTM) architectures. This study contributes to a deeper understanding of suitable feature extraction techniques for enhancing the capabilities of the LSTM model in tackling high-dimensional datasets in the realm of WRM.

Funder

Korea Environment Industry & Technology Institute

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3