A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities

Author:

Kumar Vijendra1ORCID,Kedam Naresh2ORCID,Sharma Kul Vaibhav1,Khedher Khaled Mohamed3ORCID,Alluqmani Ayed Eid4ORCID

Affiliation:

1. Department of Civil Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India

2. Department of Thermal Engineering and Thermal Engines, Samara National Research University, 443086 Samara, Russia

3. Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

4. Department of Civil Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia

Abstract

Current research studies offer an investigation of machine learning methods used for forecasting rainfall in urban metropolitan cities. Time series data, distinguished by their temporal complexities, are exploited using a unique data segmentation approach, providing discrete training, validation, and testing sets. Two unique models are created: Model-1, which is based on daily data, and Model-2, which is based on weekly data. A variety of performance criteria are used to rigorously analyze these models. CatBoost, XGBoost, Lasso, Ridge, Linear Regression, and LGBM are among the algorithms under consideration. This research study provides insights into their predictive abilities, revealing significant trends across the training, validation, and testing phases. The results show that ensemble-based algorithms, particularly CatBoost and XGBoost, outperform in both models. CatBoost emerged as the model of choice throughout all assessment stages, including training, validation, and testing. The MAE was 0.00077, the RMSE was 0.0010, the RMSPE was 0.49, and the R2 was 0.99, confirming CatBoost’s unrivaled ability to identify deep temporal intricacies within daily rainfall patterns. Both models had an R2 of 0.99, indicating their remarkable ability to predict weekly rainfall trends. Significant results for XGBoost included an MAE of 0.02 and an RMSE of 0.10, indicating their ability to handle longer time intervals. The predictive performance of Lasso, Ridge, and Linear Regression varies. Scatter plots demonstrate the robustness of CatBoost and XGBoost by demonstrating their capacity to sustain consistently low prediction errors across the dataset. This study emphasizes the potential to transform urban meteorology and planning, improve decision-making through precise rainfall forecasts, and contribute to disaster preparedness measures.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3