Sound Speed Inversion Based on Multi-Source Ocean Remote Sensing Observations and Machine Learning

Author:

Feng Xiao12ORCID,Tian Tian3,Zhou Mingzhang134ORCID,Sun Haixin134ORCID,Li Dingzhao3,Tian Feng2,Lin Rongbin134ORCID

Affiliation:

1. Shenzhen Research Institute of Xiamen University, Shenzhen 518005, China

2. School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. School of Informatics, Xiamen University, Xiamen 361005, China

4. Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application, Ministry of Natural Resources, Zhangzhou 363099, China

Abstract

Ocean sound speed is important for underwater acoustic applications, such as communications, navigation and localization, where the assumption of uniformly distributed sound speed profiles (SSPs) is generally used and greatly degrades the performance of underwater acoustic systems. The acquisition of SSPs is necessary for the corrections of the sound ray propagation paths. However, the inversion of SSPs is challenging due to the intricate relations of interrelated physical ocean elements and suffers from the high costs of calculations and hardware deployments. This paper proposes a novel sound speed inversion method based on multi-source ocean remote sensing observations and machine learning, which adapts to large-scale sea regions. Firstly, the datasets of SSPs are generated utilizing the Argo thermohaline profiles and the empirical formulas of the sound speed. Then, the SSPs are analyzed utilizing the empirical orthogonal functions (EOFs) to reduce the dimensions of the feature space as well as the computational load. Considering the nonlinear regression relations of SSPs and the observed datasets, a general framework for sound speed inversion is formulated, which combines the designed machine learning models with the reduced-dimensional feature representations, multi-source ocean remote sensing observations and water temperature data. After being well trained, the proposed machine learning models realize the accurate inversion of the targeted ocean region by inputting the real-time ocean environmental data. The experiments verify the advantages of the proposed method in terms of the accuracy and effectiveness compared with conventional methods.

Funder

Department of Natural Resources of Guangdong Province

Recruiting Talents of Nanjing University of Posts and Telecommunications

National Natural Science Foundation of China

Natural Resources Science and Technology Innovation Project of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3