Fast Kinematic Re-Calibration for Industrial Robot Arms

Author:

Kana SreekanthORCID,Gurnani JuhiORCID,Ramanathan VishalORCID,Turlapati Sri HarshaORCID,Ariffin Mohammad ZaidiORCID,Campolo DomenicoORCID

Abstract

Accurate kinematic modelling is pivotal in the safe and reliable execution of both contact and non-contact robotic applications. The kinematic models provided by robot manufacturers are valid only under ideal conditions and it is necessary to account for the manufacturing errors, particularly the joint offsets introduced during the assembling stages, which is identified as the underlying problem for position inaccuracy in more than 90% of the situations. This work was motivated by a very practical need, namely the discrepancy in terms of end-effector kinematics as computed by factory-calibrated internal controller and the nominal kinematic model as per robot datasheet. Even though the problem of robot calibration is not new, the focus is generally on the deployment of external measurement devices (for open loop calibration) or mechanical fixtures (for closed loop calibration). On the other hand, we use the factory-calibrated controller as an ‘oracle’ for our fast-recalibration approach. This allows extracting calibrated intrinsic parameters (e.g., link lengths) otherwise not directly available from the ‘oracle’, for use in ad-hoc control strategies. In this process, we minimize the kinematic mismatch between the ideal and the factory-calibrated robot models for a Kinova Gen3 ultra-lightweight robot by compensating for the joint zero position error and the possible variations in the link lengths. Experimental analysis has been presented to validate the proposed method, followed by the error comparison between the calibrated and un-calibrated models over training and test sets.

Funder

Delta-NTU Corp Lab, National Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3