Affiliation:
1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
Abstract
In modern logistics, the box-in-box insertion task is representative of a wide range of packaging applications, and automating compliant object insertion is difficult due to challenges in modelling the object deformation during insertion. Using Learning from Demonstration (LfD) paradigms, which are frequently used in robotics to facilitate skill transfer from humans to robots, can be one solution for complex tasks that are difficult to mathematically model. In order to automate the box-in-box insertion task for packaging applications, this study makes use of LfD techniques. The proposed framework has three phases. Firstly, a master–slave teleoperated robot system is used in the initial phase to haptically demonstrate the insertion task. Then, the learning phase involves identifying trends in the demonstrated trajectories using probabilistic methods, in this case, Gaussian Mixture Regression. In the third phase, the insertion task is generalised, and the robot adjusts to any object position using barycentric interpolation. This method is novel because it tackles tight insertion by taking advantage of the boxes’ natural compliance, making it possible to complete the task even with a position-controlled robot. To determine whether the strategy is generalisable and repeatable, experimental validation was carried out.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference49 articles.
1. Whitney, D.E. (2004). Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development, Oxford University Press.
2. Xu, J., Hou, Z., Liu, Z., and Qiao, H. (2019). Compare contact model-based control and contact model-free learning: A survey of robotic peg-in-hole assembly strategies. arXiv.
3. Force-guided robot in automated assembly of mobile phone;Chin;Assem. Autom.,2003
4. Multiple peg-in-hole compliant assembly based on a learning-accelerated deep deterministic policy gradient strategy;Li;Ind. Robot. Int. J. Robot. Res. Appl.,2021
5. Song, R., Li, F., Fu, T., and Zhao, J. (2020). A robotic automatic assembly system based on vision. Appl. Sci., 10.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献