Laser Ablated Periodic Nanostructures on Titanium and Steel Implants Influence Adhesion and Osteogenic Differentiation of Mesenchymal Stem Cells

Author:

Böker Kai OliverORCID,Kleinwort Frederick,Klein-Wiele Jan-Hendrick,Simon Peter,Jäckle KatharinaORCID,Taheri ShahedORCID,Lehmann Wolfgang,Schilling Arndt F.ORCID

Abstract

Metal implants used in trauma surgeries are sometimes difficult to remove after the completion of the healing process due to the strong integration with the bone tissue. Periodic surface micro- and nanostructures can directly influence cell adhesion and differentiation on metallic implant materials. However, the fabrication of such structures with classical lithographic methods is too slow and cost-intensive to be of practical relevance. Therefore, we used laser beam interference ablation structuring to systematically generate periodic nanostructures on titanium and steel plates. The newly developed laser process uses a special grating interferometer in combination with an industrial laser scanner and ultrashort pulse laser source, allowing for fast, precise, and cost-effective modification of metal surfaces in a single step process. A total of 30 different periodic topologies reaching from linear over crossed to complex crossed nanostructures with varying depths were generated on steel and titanium plates and tested in bone cell culture. Reduced cell adhesion was found for four different structure types, while cell morphology was influenced by two different structures. Furthermore, we observed impaired osteogenic differentiation for three structures, indicating reduced bone formation around the implant. This efficient way of surface structuring in combination with new insights about its influence on bone cells could lead to newly designed implant surfaces for trauma surgeries with reduced adhesion, resulting in faster removal times, reduced operation times, and reduced complication rates.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3