Effective Young’s Modulus of Complex Three Dimensional Multilayered Ti/Au Micro-Cantilevers Fabricated by Electrodeposition and the Temperature Dependency

Author:

Watanabe Hitomi,Chang Tso-Fu MarkORCID,Schneider MichaelORCID,Schmid Ulrich,Chen Chun-Yi,Iida Shinichi,Yamane Daisuke,Ito Hiroyuki,Machida Katsuyuki,Masu Kazuya,Sone MasatoORCID

Abstract

Ti/Au multi-layered micro-cantilevers with complex three-dimensional structures used as micro-components in micro-electromechanical systems (MEMS) sensors were prepared by lithography and electrodeposition, and the effective Young’s modulus was evaluated by the resonance frequency method and finite element method simulation. Effects of the constraint condition at the fixed-end of the micro-cantilever and the temperature dependency of the effective Young’s modulus were studied. Three types of the constraint at the fixed-end were prepared, which were normal type (constraining only bottom surface of the fixed-end), block type (constraining both top and bottom surfaces), and bridge type (top surfaces covering with a bridge-like structure). The temperature dependency test was conducted in a temperature range from 150 to 300 °C in a vacuum chamber. An increase in the effective Young’s modulus was observed as the constraint condition became more rigid, and the effective Young’s modulus merely changed as the temperature varied from room temperature to 300 °C.

Funder

New Energy and Industrial Technology Development Organization

Core Research for Evolutional Science and Technology

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3