Comparative Assessment of Spire and COSMIC-2 Radio Occultation Data Quality

Author:

Qiu Cong12,Wang Xiaoming13ORCID,Zhou Kai1,Zhang Jinglei1,Chen Yufei12,Li Haobo4ORCID,Liu Dingyi12,Yuan Hong1

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China

2. School of Electronic, Electrical and Communicating Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China

3. College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China

4. School of Science (Geospatial), RMIT University, Melbourne, VIC 3001, Australia

Abstract

In this study, we investigate the performances of a commercial Global Navigation Satellite System (GNSS) Radio Occultation (RO) mission and a new-generation RO constellation, i.e., Spire and Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2), respectively. In the statistical comparison between Spire and COSMIC-2, the results indicate that although the average signal-to-noise ratio (SNR) of Spire is far weaker than that of COSMIC-2, the penetration of Spire is comparable to, and occasionally even better than, that of COSMIC-2. In our analysis, we find that the penetration depth is contingent upon various factors including SNR, GNSS, RO modes, topography, and latitude. With the reanalysis of the European Centre for Medium-Range Weather Forecasts and Radiosonde as the reference data, the identical error characteristics of Spire and COSMIC-2 reveal that overall, the accuracy of Spire’s neutral-atmosphere data products was found to be comparable to that of COSMIC-2.

Funder

Aerospace Information Research Institute and CAS Pioneer Hundred Talents Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3