PlanetiQ Radio Occultation: Preliminary Comparative Analysis of Neutral Profiles vs. COSMIC and NWP Models

Author:

Ahmed Ibrahim F.1ORCID,Alheyf Mohammed2ORCID,Yamany Mohamed S.13ORCID

Affiliation:

1. Department of Construction Engineering, Faculty of Engineering, Zagazig University, Zagazig 44159, Egypt

2. Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

3. Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY 82071, USA

Abstract

Radio Occultation (RO) is pivotal for profiling the neutral and ionized atmosphere, with the PlanetiQ mission, via its GNOMES satellites, striving to establish an advanced atmospheric observing system. However, an assessment of the spatiotemporal distributions of PlanetiQ observations and comparisons with reliable datasets are lacking. This study addresses this gap by examining the temporal and spatial distribution of RO observations from PlanetiQ during its initial 198 operational days in 2023, alongside comparisons with COSMIC and Numerical Weather Prediction (NWP) models. Data from GN02, GN03, and GN04 satellites, yielding 1099, 1313, and 1843 RO events per day, respectively, were analyzed. The satellite constellation’s observations demonstrate a generally well-distributed pattern, albeit minor deficiencies in equatorial and polar regions. Single-profile comparisons with COSMIC data reveal strong correlations for pressure, temperature, Water Vapor Pressure (WVP), and refractivity profiles, with temperature exhibiting larger variations (RMSE = 1.24 °C). Statistical analyses confirm statistically insignificant differences between the PlanetiQ and COSMIC profiles at the same spatio-temporal coordinates. Comparisons with NWP models show slight differences with GFS, with overall RMSE values of 0.23 mb (WVP), 0.6 mb (pressure), 1.3 (refractivity), and 1.5 °C (temperature). However, assessments against GFS/ECMWF models indicate overall compatibility, with insignificant differences between PlanetiQ profiles and model observations.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3