The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review

Author:

Gorbunov Michael12ORCID,Kan Valery1

Affiliation:

1. A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevsky Per. 3, Moscow 119017, Russia

2. Hydrometcenter of Russia, Bolshoy Predtechensky Per. 13, Building 1, Moscow 123376, Russia

Abstract

Internal gravity waves (IGWs) in the middle atmosphere are the main source of mesoscale fluctuations of wind and temperature. The parameterization of IGWs and study of their climatology is necessary for the development of global atmospheric circulation models. In this review, we focus on the application of Radio Occultation (RO) observations for the retrieval of IGW parameters. (1) The simplest approach employs the retrieved temperature profiles. It is based on the fact that IGWs are highly anisotropic structures and can be accurately retrieved by RO. The basic assumption is that all the temperature fluctuations are caused by IGWs. The smoothed background temperature profile defines the the Brunt–Väisälä frequency, which, together with the temperature fluctuations, defines the IGW specific potential energy. Many studies have derived the distribution and climatology of potential energy, which is one of the most important characteristics of IGWs. (2) More detailed analysis of the temperature profiles is based on the derivation of the temperature fluctuation spectra. For saturated IGWs, the spectra must obey the power law with an exponent of −3. Such spectra are obtained by using Wave Optical (WO) processing. (3) More advanced analysis employs space–frequency analysis. It is based on phase-sensitive techniques like cross S- or wavelet transforms in order to identify propagating IGWs. (4) Another direction is the IGW parameter estimate from separate temperature profiles applying the stability condition in terms of the Richardson number. In this framework, a necessary condition is formulated that defines whether or not the temperature fluctuations can be related to IGW events. The temperature profile retrieval involves integral transforms and filtering that constitute the observation filter. (5) A simpler filter is implemented by the analysis of the RO amplitude fluctuation spectra, based on the diffraction theory in the framework of the phase screen and weak fluctuation approximations. The two spectral parameters, the external scale and the structural characteristic, define the specific potential energy. This approach allows the derivation of the spacial and seasonal distributions of IGW activity. We conclude that the success of IGW study by RO is stimulated by a large number of RO observations and advanced techniques based on Fourier and space–time analysis, physical equations describing IGWs, and diffraction theory.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3