Abstract
The present work reports the degradation of 4-nitrophenol using BiVO4/CuO hybrid material synthesized by the precipitation of BiVO4 in the presence of CuO. Morphological and structural characterizations were performed using X-ray diffraction and scanning electronic microscopy coupled to energy dispersive X-ray spectroscopy. Through the calculation of the Kubelka–Munk function applied to diffuse reflectance spectrophotometry data, the hybrid material presented absorption edge of 1.85 eV. The formation of p-n heterojunction between BiVO4 and CuO renders the hybrid material suitable for the construction of a photoanode employed in hydroxyl radical generation. UV–vis spectrophotometry and high-performance liquid chromatography experiments were performed in order to monitor the degradation of 4-nitrophenol and the formation of secondary products. Additional information regarding the hybrid material was obtained through ion chromatography and total organic carbon analyses. The application of BiVO4/CuO-based photocatalyzer led to a 50.2% decrease in total organic carbon after the degradation of 4-nitrophenol. Based on the results obtained in the study, BiVO4/CuO has proved to be a promising material suitable for the removal of recalcitrant compounds in water treatment plants.
Subject
General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献