Reorientation Mechanisms of Graphene Coated Copper {001} Surfaces

Author:

Song Jian1,Yao Songsong1,Li Quan1,Ni Jiamiao1,Yan Zhuoxin1,Yang Kunming1,Liu Guisen1,Liu Yue1ORCID,Wang Jian2ORCID

Affiliation:

1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

Engineering the surface orientation of face-centered cubic (fcc) metals to the close-packed {111} plane can significantly enhance their oxidation resistance. However, owing to the synergetic effect of surface energy density (γ˙) and strain energy density (ω), such close-packed surface orientation can currently only be achieved by atomic-level thin film epitaxy or monocrystallization of polycrystalline metals. In this study, we characterized the microstructures of pure copper (Cu) foil and two types of graphene-coated Cu (Gr/Cu) foils and observed a 12~14 nm thick reconstructed surface layer with the {111} orientation in the high-temperature deposited Gr/{001} Cu surface. Combining the statistical results with thermodynamic analysis, we proposed a surface melting-solidification mechanism for the reconstruction of the Cu surface from {001} orientation to {111} orientation. This process is dominated by Gr/Cu interfacial energy and is particularly promoted by high-temperature surface melting. We also validated such a mechanism by examining Cu surfaces coated by h-BN (hexagonal boron nitride) and amorphous carbon. Our findings suggest a possible strategy to enhance the surface properties of fcc metals via engineering surface crystallography.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3