Affiliation:
1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
Direct in situ growth of graphene on dielectric substrates is a reliable method for overcoming the challenges of complex physical transfer operations, graphene performance degradation, and compatibility with graphene-based semiconductor devices. A transfer-free graphene synthesis based on a controllable and low-cost polymeric carbon source is a promising approach for achieving this process. In this paper, we report a two-step thermal transformation method for the copper-assisted synthesis of transfer-free multilayer graphene. Firstly, we obtained high-quality polymethyl methacrylate (PMMA) film on a 300 nm SiO2/Si substrate using a well-established spin-coating process. The complete thermal decomposition loss of PMMA film was effectively avoided by introducing a copper clad layer. After the first thermal transformation process, flat, clean, and high-quality amorphous carbon films were obtained. Next, the in situ obtained amorphous carbon layer underwent a second copper sputtering and thermal transformation process, which resulted in the formation of a final, large-sized, and highly uniform transfer-free multilayer graphene film on the surface of the dielectric substrate. Multi-scale characterization results show that the specimens underwent different microstructural evolution processes based on different mechanisms during the two thermal transformations. The two-step thermal transformation method is compatible with the current semiconductor process and introduces a low-cost and structurally controllable polymeric carbon source into the production of transfer-free graphene. The catalytic protection of the copper layer provides a new direction for accelerating the application of graphene in the field of direct integration of semiconductor devices.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献