Medicane Ianos: 4D-Var Data Assimilation of Surface and Satellite Observations into the Numerical Weather Prediction Model WRF

Author:

Vourlioti ParaskeviORCID,Mamouka TheanoORCID,Agrafiotis Apostolos,Kotsopoulos Stylianos

Abstract

This work investigates extreme weather events such as the onset of medicanes, which can cause severe socioeconomic impacts, along with their predictability. In order to accurately forecast such events, the Weather Research and Forecasting (WRF) model and its state-of-the-art data assimilation modeling framework (WRFDA) were set up to produce high-resolution forecasts for the case study of Medicane Ianos, which affected Greece between 17 and 19 September 2020. Information from weather stations and the satellite precipitation product IMERG was blended with the background model information from the Global Forecast System (GFS) using the 4D variational data assimilation (4D-Var) technique. New fields in an 18 km spatial resolution domain covering Europe were generated and utilized as improved initial conditions for the forecast model. Forecasts were issued based on these improved initial conditions at two nested domains of 6 km and 2 km spatial resolution, with the 2 km domain enclosing Greece. Denial experiments, where no observational data were assimilated in the initial boundary conditions, showed that the temperature fields benefited throughout the forecasting horizon from the assimilation (ranging from a 5 to 10% reduction in the average MAE values), while neutral to slightly positive (ranging from a 0.4 to 2% reduction in the average MAE values) improvement was found for wind, although not throughout the forecast horizon. The increase in spatial resolution did not significantly reduce the forecast error, but was kept at the same small order of magnitude. A tendency of the model to overpredict precipitation regardless of assimilation was observed. The assimilation of the IMERG data improved the precipitation forecasting ability up to the 18th hour of forecast. When compared to assimilation experiments that excluded IMERG data, the assimilation of IMERG data produced a better representation of the spatial distribution of the precipitation fields.

Funder

European Union Horizon 2020 - STARGATE project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3