Direct 4D-Var Assimilation of NCEP Stage IV Radar and Gauge Precipitation Data at ECMWF

Author:

Lopez Philippe1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract Direct four-dimensional variational data assimilation (4D-Var) of NCEP stage IV radar and gauge precipitation observations over the eastern United States has been developed and tested in ECMWF’s global Integrated Forecasting System. This is the natural extension of earlier work using a two-step 1D+4D-Var approach. Major aspects of the implementation are described and discussed in this paper. In particular, it is found that assimilating 6-h precipitation accumulations instead of the original hourly data substantially improves the behavior of 4D-Var, especially as regards the validity of the tangent-linear assumption. The comparison of background and analysis precipitation departures demonstrates that most of the information contained in the new precipitation observations is properly assimilated. Experiments run over the periods April–May and September–October 2009 also show that local precipitation forecasts become significantly better for ranges up to 12 h, which indicates that a genuine precipitation analysis can now be obtained over the eastern United States. Geopotential, temperature, moisture, and wind forecast scores are generally neutral or slightly positive for all regions of the globe and at all ranges, which is consistent with previous 1D+4D-Var results. The most crucial issue that remains unsolved is the treatment of nonprecipitating model background occurrences because of the corresponding absence of sensitivity in the linearized moist physics. For the moment, only points where both model background and observations are rainy are assimilated. Operational implementation using U.S. data is planned in 2011 and one can hope that new networks of radars (and maybe rain gauges) can be added in the 4D-Var assimilation process in the future.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Variational quality control;Andersson;Quart. J. Roy. Meteor. Soc.,1999

2. The NCEP hourly multi-sensor U.S. precipitation analysis;Baldwin,1996

3. Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF. Part I: 1D-Var;Bauer;Quart. J. Roy. Meteor. Soc.,2006

4. Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF. Part II: 4D-Var;Bauer;Quart. J. Roy. Meteor. Soc.,2006

5. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation;Bauer;Quart. J. Roy. Meteor. Soc.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3