Data Assimilation of High-Resolution Satellite Rainfall Product Improves Rainfall Simulation Associated with Landfalling Tropical Cyclones in the Yangtze River Delta

Author:

Wang JieORCID,Xu Youpeng,Yang LongORCID,Wang QiangORCID,Yuan Jia,Wang Yuefeng

Abstract

Floods caused by heavy rainfall events associated with landfalling tropical cyclones (TCs) represent a major risk for the Yangtze River Delta (YRD) region of China. Accurate extreme precipitation forecasting, at long lead times, is crucial for the improvement of flood prevention and warning. However, accurate prediction of timing, location, and intensity of the heavy rainfall events is a major challenge for the Numerical Weather Prediction (NWP). In this study, high-resolution satellite precipitation products like Global Precipitation Measurement (GPM) are evaluated at the hourly timescale, and the optimal Integrated Multi-satellite Retrievals for GPM (IMERG) precipitation product is selected and applied to directly assimilate into the Weather Research and Forecasting (WRF) model via the four-dimensional variational (4D-Var) method. The TC Jondari and Rumbia events of August 2018 are evaluated to analyze the performance of the WRF model with the 4D-Var method assimilated IMERG precipitation product (DA-IMERG) and the conventional observation (DA-CONV) for real-time heavy rainfall forecasting. The results indicate that (1) IMERG precipitation products were larger and wetter than the observed precipitation values over YRD. By comparison, the performance of “late” run precipitation product (IMERG-L) was the closest to the observation data with lower deviation and higher detection capability; (2) DA-IMERG experiment substantially affected the magnitude of the WRF model primary variables, which changed the precipitation pattern of the TC heavy rain. (3) DA-IMERG experiment further improved the forecast of heavy rainbands and relatively reduced erroneous detection rate than CTL and DA-CONV experiments at the grid scale. Meanwhile, the DA-IMERG experiment has a better fractions skill score (FSS) value (especially in the threshold of 10 mm/h) than DA-CONV for TC Jondari and Rumbia at the spatial scale, while it shows a lower performance than CTL and DA-CONV experiments when the threshold is lower than the 5 mm/h for the TC Rumbia.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3