Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles

Author:

Qiu Kaichi,Ding Lin,Yu Wenbing,Chen KezhengORCID,Huang Shuai,Gao KaiORCID

Abstract

Climate change is accelerating its adverse impact on ecosystems and infrastructure systems in cold regions. For extensive carbonate saline soil areas, their response to the freeze-thaw cycle remains uncertain. By considering the continuous intensification of freeze-thaw cycle frequency, the mechanical characteristics of carbonate saline soils are analyzed for different salt content (0.6% to 2.1%) based on the mechanical test in this paper. The purpose is to reveal the change law of shear strength and its parameters of carbonate saline soils under the scenario of continuous freezing and thawing cycles. The micro-characteristics of the carbonate saline soil before and after freeze-thaw cycling were analyzed by scanning electron microscopy, indicating changes in the structural soil properties caused by the combination of freeze-thawing and salinity. The scanning electron microscope images reveal the cumulative effect of frost heaving and salt expansion, i.e., increasing the number of pores between particles, reducing the effective contact between particles, and weakening the interaction force, resulting in cracks development. A series of mechanical tests demonstrate the stress-strain behavior of carbonate saline soils for different numbers of freeze-thaw cycles under different confining pressures. A transformation from strain-softening to strain-hardening is observed with an increase in the salt content from 0.6% to 2.1%. Furthermore, the shear strength of the carbonate saline soil decreases as the salt content and number of freeze-thaw cycles increase. The shear strength degradation mechanism is attributed to the cohesion and the internal friction angle. These shear strength parameters are critical in geotechnical analyses, such as evaluating of load capacity of foundations and slope stability in similar saline soils.

Funder

National Natural Science Foundation of China

Funds of State Key Laboratory of Frozen Soil Engineering

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3