Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review

Author:

Jin Huijun,Ma QiangORCID

Abstract

A huge amount of carbon (C) is stored in permafrost regions. Climate warming and permafrost degradation induce gradual and abrupt carbon emissions into both the atmosphere and hydrosphere. In this paper, we review and synthesize recent advances in studies on carbon stocks in permafrost regions, biodegradability of permafrost organic carbon (POC), carbon emissions, and modeling/projecting permafrost carbon feedback to climate warming. The results showed that: (1) A large amount of organic carbon (1460–1600 PgC) is stored in permafrost regions, while there are large uncertainties in the estimation of carbon pools in subsea permafrost and in clathrates in terrestrial permafrost regions and offshore clathrate reservoirs; (2) many studies indicate that carbon pools in Circum-Arctic regions are on the rise despite the increasing release of POC under a warming climate, because of enhancing carbon uptake of boreal and arctic ecosystems; however, some ecosystem model studies indicate otherwise, that the permafrost carbon pool tends to decline as a result of conversion of permafrost regions from atmospheric sink to source under a warming climate; (3) multiple environmental factors affect the decomposability of POC, including ground hydrothermal regimes, carbon/nitrogen (C/N) ratio, organic carbon contents, and microbial communities, among others; and (4) however, results from modeling and projecting studies on the feedbacks of POC to climate warming indicate no conclusive or substantial acceleration of climate warming from POC emission and permafrost degradation over the 21st century. These projections may potentially underestimate the POC feedbacks to climate warming if abrupt POC emissions are not taken into account. We advise that studies on permafrost carbon feedbacks to climate warming should also focus more on the carbon feedbacks from the rapid permafrost degradation, such as thermokarst processes, gas hydrate destabilization, and wildfire-induced permafrost degradation. More attention should be paid to carbon emissions from aquatic systems because of their roles in channeling POC release and their significant methane release potentials.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3