A Spatio-Temporal Deep Learning Network for the Short-Term Energy Consumption Prediction of Multiple Nodes in Manufacturing Systems

Author:

Guo JianhuaORCID,Han Mingdong,Zhan Guozhi,Liu Shaopeng

Abstract

Short-term energy prediction plays an important role in green manufacturing in the industrial internet environment and has become the basis of energy wastage identification, energy-saving plans and energy-saving control. However, the short-term energy prediction of multiple nodes in manufacturing systems is still a challenging issue owing to the fuzzy material flow (spatial relationship) and the dynamic production rhythm (temporal relationship). To obtain the complex spatial and temporal relationships, a spatio-temporal deep learning network (STDLN) method is presented for the short-term energy consumption prediction of multiple nodes in manufacturing systems. The method combines a graph convolutional network (GCN) and a gated recurrent unit (GRU) and predicts the future energy consumption of multiple nodes based on prior knowledge of material flow and the historical energy consumption time series. The GCN is aimed at capturing spatial relationships, with the material flow represented by a topology model, and the GRU is aimed at capturing dynamic rhythm from the energy consumption time series. To evaluate the method presented, several experiments were performed on the power consumption dataset of an aluminum profile plant. The results show that the method presented can predict the energy consumption of multiple nodes simultaneously and achieve a higher performance than methods based on the GRU, GCN, support vector regression (SVR), etc.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3