A Regression Framework for Energy Consumption in Smart Cities with Encoder-Decoder Recurrent Neural Networks

Author:

Carrera Berny1ORCID,Kim Kwanho1ORCID

Affiliation:

1. Department of Industrial and Management Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

Currently, a smart city should ideally be environmentally friendly and sustainable, and energy management is one method to monitor sustainable use. This research project investigates the potential for a “smart city” to improve energy management by enabling the adoption of various types of intelligent technology to improve the energy sustainability of a city’s infrastructure and operational efficiency. In addition, the South Korean smart city region of Songdo serves as the inspiration for this case study. In the first module of the proposed framework, we place a strong emphasis on the data capabilities necessary to generate energy statistics for each of the numerous structures. In the second phase of the procedure, we employ the collected data to conduct a data analysis of the energy behavior within the microcities, from which we derive characteristics. In the third module, we construct baseline regressors to assess the proposed model’s varying degrees of efficacy. Finally, we present a method for building an energy prediction model using a deep learning regression model to solve the problem of 48-hour-ahead energy consumption forecasting. The recommended model is preferable to other models in terms of R2, MAE, and RMSE, according to the study’s findings.

Funder

Incheon National University

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. U.S. Energy Information Administration (2021). Energy Consumption By Sector in U.S.

2. U.S. Energy Information Administration (2015). Electricity Consumption in U.S. Homes.

3. (2021). Energy Statistics Related Data, Korea Energy Agency.

4. Obregon, J., Han, Y.-R., Ho, C.W., Mouraliraman, D., Lee, C.W., and Jung, J.-Y. (2023). Convolutional autoencoder-based SOH estimation of lithium-ion batteries using electrochemical impedance spectroscopy. J. Energy Storage, 60.

5. An industry 4.0 approach to electric vehicles;Athanasopoulou;Int. J. Comput. Integr. Manuf.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3