Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey

Author:

Musa Abubakar Ahmad1ORCID,Hussaini Adamu1,Liao Weixian1ORCID,Liang Fan2,Yu Wei1

Affiliation:

1. Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA

2. Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA

Abstract

Cyber-physical systems (CPS) refer to systems that integrate communication, control, and computational elements into physical processes to facilitate the control of physical systems and effective monitoring. The systems are designed to interact with the physical world, monitor and control the physical processes while in operation, and generate data. Deep Neural Networks (DNN) comprise multiple layers of interconnected neurons that process input data to produce predictions. Spatial-temporal data represents the physical world and its evolution over time and space. The generated spatial-temporal data is used to make decisions and control the behavior of CPS. This paper systematically reviews the applications of DNNs, namely convolutional, recurrent, and graphs, in handling spatial-temporal data in CPS. An extensive literature survey is conducted to determine the areas in which DNNs have successfully captured spatial-temporal data in CPS and the emerging areas that require attention. The research proposes a three-dimensional framework that considers: CPS (transportation, manufacturing, and others), Target (spatial-temporal data processing, anomaly detection, predictive maintenance, resource allocation, real-time decisions, and multi-modal data fusion), and DNN schemes (CNNs, RNNs, and GNNs). Finally, research areas that need further investigation are identified, such as performance and security. Addressing data quality, strict performance assurance, reliability, safety, and security resilience challenges are the areas that are required for further research.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3