A robust federated biased learning algorithm for time series forecasting

Author:

Song Mingli1,Zhao Xinyu1,Pedrycz Witold2

Affiliation:

1. Communication University of China

2. University of Alberta

Abstract

Abstract

The federated averaging algorithm (FedAvg) is extensively used for multi-sensor data modeling but often overlooks the unique characteristics of local models when privacy and data security are not considered. This study introduces a novel federated learning algorithm built upon the FedAvg framework, which emphasizes the specificity of each local model to optimize global knowledge aggregation. The algorithm's effectiveness is demonstrated through an air quality index prediction problem, showcasing superior prediction performance and robustness in noisy data scenarios. Additionally, the study delves into the reliability and robustness of the proposed approach, addressing the prevalent notion that centralized learning methods often surpass federated learning when data security is not a concern. Our experiments affirm the necessity and superiority of federated learning methods, even in the absence of privacy considerations, by effectively managing real-world noisy data.

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Yu, P., Liu, Y.: Federated object detection: Optimizing object detection model with federated learning. In: Proc. 3rd Int. Conf. Vision, Image Signal Process., pp. 1–6 (2019)

2. Latif, S., Khalifa, S., Rana, R., Jurdak, R.: Federated learning for speech emotion recognition applications. In: 2020 19th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), pp. 341–342. IEEE (2020)

3. Ek, S., Portet, F., Lalanda, P., Vega, G.: Evaluation of federated learning aggregation algorithms: application to human activity recognition. In: Adjunct Proc. 2020 ACM Int. Joint Conf. Pervasive Ubiquitous Comput. Proc. 2020 ACM Int. Symp. Wearable Comput., pp. 638–643 (2020)

4. Federated learning and autonomous UAVs for hazardous zone detection and AQI prediction in IoT environment;Chhikara P;IEEE Internet Things J.,2021

5. McMahan, B., Moore, E., Ramage, D., Hampson, S., y, Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artif. Intell. Stat., pp. 1273–1282 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3