Modeling-Based EMG Signal (MBES) Classifier for Robotic Remote-Control Purposes

Author:

Antonelli Michele GabrioORCID,Beomonte Zobel PierluigiORCID,Durante FrancescoORCID,Zeer MohammadORCID

Abstract

The fast-growing human–robot collaboration predicts that a human operator could command a robot without mechanical interface if effective communication channels are established. In noisy, vibrating and light sensitive environments, some sensors for detecting the human intention could find critical issues to be adopted. On the contrary, biological signals, as electromyographic (EMG) signals, seem to be more effective. In order to command a laboratory collaborative robot powered by McKibben pneumatic muscles, promising actuators for human–robot collaboration due to their inherent compliance and safety features have been researched, a novel modeling-based electromyographic signal (MBES) classifier has been developed. It is based on one EMG sensor, a Myotrac one, an Arduino Uno and a proper code, developed in the Matlab environment, that performs the EMG signal recognition. The classifier can recognize the EMG signals generated by three hand-finger movements, regardless of the amplitude and time duration of the signal and the muscular effort, relying on three mathematical models: exponential, fractional and Gaussian. These mathematical models have been selected so that they are the best fitting with the EMG signal curves. Each of them can be assigned a consent signal for performing the wanted pick-and-place task by the robot. An experimental activity was carried out to test and achieve the best performance of the classifier. The validated classifier was applied for controlling three pressure levels of a McKibben-type pneumatic muscle. Encouraging results suggest that the developed classifier can be a valid command interface for robotic purposes.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3