Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW

Author:

Loskutova Aleksandra,Roozbahani Daniel,Alizadeh MarjanORCID,Handroos Heikki

Abstract

AbstractRobots are increasingly present in everyday life, replacing human involvement in various domains. In situations involving danger or life-threatening conditions, it is safer to deploy robots instead of humans. However, there are still numerous applications where human intervention remains indispensable. The strategy to control a robot can be developed based on intelligent adaptive programmed algorithms or by harnessing the physiological signals of the robot operator, such as body movements, brain EEG, and muscle EMG which is a more intuitive approach. This study focuses on creating a control platform for a 3-finger gripper, utilizing Electromyography (EMG) signals derived from the operator’s forearm muscles. The developed platform consisted of a Robotiq three-finger gripper, a Delsys Trigno wireless EMG, as well as an NI CompactRIO data acquisition platform. The control process was developed using NI LabVIEW software, which extracts, processes, and analyzes the EMG signals, which are subsequently transformed into control signals to operate the robotic gripper in real-time. The system operates by transmitting the EMG signals from the operator's forearm muscles to the robotic gripper once they surpass a user-defined threshold. To evaluate the system's performance, a comprehensive set of regressive tests was conducted on the forearm muscles of three different operators based on four distinct case scenarios. Despite of the gripper’s structural design weakness to perform pinching, however, the results demonstrated an impressive average success rate of 95% for tasks involving the opening and closing of the gripper to perform grasping. This success rate was consistent across scenarios that included alterations to the scissor configuration of the gripper.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3