Estimation of Instantaneous Air Temperature under All-Weather Conditions Based on MODIS Products in North and Southwest China

Author:

Wang Yuanxin12,Liu Jinxiu2,Zhu Wenbin1ORCID

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. School of Information Engineering, China University of Geosciences, Beijing 100083, China

Abstract

Air temperature (Ta) is a common meteorological element involved in many fields, such as surface energy exchange and water circulation. Consequently, accurate Ta estimation is essential for the establishment of hydrological, climate, and environmental models. Unlike most studies concerned with the estimation of daily Ta from land surface temperature, this study focused on the estimation of instantaneous Ta from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric profile products aboard the Terra and Aqua satellites. The applicability of various estimation methods was examined in two regions with different geomorphological and climate conditions, North and Southwest China. Specifically, the spatiotemporal trend of Ta under clear sky conditions can be reflected by the atmospheric profile extrapolation and average methods. However, the accuracy of Ta estimation was poor, with root mean square error (RMSE) ranging from 3.5 to 5.2 °C for North China and from 4.0 to 7.7 °C for Southwest China. The multiple linear regression model significantly improved the accuracy of Ta estimation by introducing auxiliary data, resulting in RMSE of 1.6 and 1.5 °C in North China and RMSE of 2.2 and 2.3 °C in Southwest China for the Terra and Aqua datasets, respectively. Since atmospheric profile products only provide information under clear sky conditions, a new multiple linear regression model was established to estimate the instantaneous Ta under cloudy sky conditions independently from atmospheric profile products, resulting in RMSE of 1.9 and 1.9 °C in North China and RMSE of 2.5 and 2.8 °C in Southwest China, for the Terra and Aqua datasets, respectively. Finally, instantaneous Ta products with high accuracy were generated for all-weather conditions in the study regions to analyze their Ta spatial patterns. The accuracy of Ta estimation varies depending on MODIS datasets, regions, elevation, and land cover types.

Funder

National Key Research and Development Program of China

National Natural Sciences Foundation of China

Youth Innovation Promotion Association of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3