Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China

Author:

Wang Chunling,Bi XuORCID,Luan Qingzu,Li Zhanqing

Abstract

Meteorologically observed air temperature (Ta) is limited due to low density and uneven distribution that leads to uncertain accuracy. Therefore, remote sensing data have been widely used to estimate near-surface Ta on various temporal scales due to their spatially continuous characteristics. However, few studies have focused on instantaneous Ta when satellites overpass. This study aims to produce both daily and instantaneous Ta datasets at 1 km resolution for the Jingjinji area, China during 2018–2019, using machine learning methods based on remote sensing data, dense meteorological observation station data, and auxiliary data (such as elevation and normalized difference vegetation index). Newly released Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 surface Downward Shortwave Radiation (DSR) was introduced to improve the accuracy of Ta estimation. Five machine learning algorithms were implemented and compared so that the optimal one could be selected. The random forest (RF) algorithm outperformed the others (such as decision tree, feedforward neural network, generalized linear model) and RF obtained the highest accuracy in model validation with a daily root mean square error (RMSE) of 1.29 °C, mean absolute error (MAE) of 0.94 °C, daytime instantaneous RMSE of 1.88 °C, MAE of 1.35 °C, nighttime instantaneous RMSE of 2.47 °C, and MAE of 1.83 °C. The corresponding R2 was 0.99 for daily average, 0.98 for daytime instantaneous, and 0.95 for nighttime instantaneous. Analysis showed that land surface temperature (LST) was the most important factor contributing to model accuracy, followed by solar declination and DSR, which implied that DSR should be prioritized when estimating Ta. Particularly, these results outperformed most models presented in previous studies. These findings suggested that RF could be used to estimate daily instantaneous Ta at unprecedented accuracy and temporal scale with proper training and very dense station data. The estimated dataset could be very useful for local climate and ecology studies, as well as for nature resources exploration.

Funder

China Meteorological Administration through the Feng-Yun III Satellite Ground Application Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3