Validation of MODIS Temperature and Emissivity Products Based on Ground-Based Mid-Wave Hyperspectral Imaging Measurement in the Northwestern Plateau Region of Qinghai, China

Author:

Jiang Yuepeng1,Cao Yunhua1ORCID,Wu Zhensen1ORCID,Cao Yisen1

Affiliation:

1. School of Physics, Xidian University, Xi’an 710071, China

Abstract

The climatic fluctuations in northern China exhibit remarkable variability, making it imperative to harness the power of MODIS data for conducting comprehensive investigations into the influences of desertification, desert expansion, and snow and ice melting phenomena. Consequently, the rigorous evaluation of MODIS land surface temperature (LST) and land surface emissivity (LSE) products takes on a momentous role, as this provides an essential means to ensure data accuracy, thereby instilling confidence in the robustness of scientific analyses. In this study, a high-resolution hyperspectral imaging instrument was utilized to measure mid-wave hyperspectral images of grasslands and deserts in the northwest plateau region of Qinghai, China. The measured data were processed in order to remove the effects of sensor noise, atmospheric radiation, transmission attenuation, and scattering caused by sunlight and atmospheric radiation. Inversion of the temperature field and spectral emissivity was performed on the measured data. The inverted data were compared and validated against MODIS land surface temperature and emissivity products. The validation results showed that the absolute errors of emissivity of grassland backgrounds provided by MCD11C1 in the three mid-wave infrared bands (3.66–3.840 μm, 3.929–3.989 μm, and 4.010–4.080 μm) were 0.0376, 0.0191, and 0.0429, with relative errors of 3.9%, 2.1%, and 4.8%, respectively. For desert backgrounds, the absolute errors of emissivity were 0.0057, 0.0458, and 0.0412, with relative errors of 0.4%, 4.9%, and 3.9%, respectively. The relative errors for each channel were all within 5%. Regarding the temperature data products, compared to the inverted temperatures of the deserts and grasslands, the remote sensing temperatures provided by MOD11L2 had absolute errors of ±2.3 K and ±4.1 K, with relative errors of 1.4% and 0.7%, respectively. The relative errors for the temperature products were all within 2%.

Funder

111 Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3