Mapping Malaria Vector Habitats in West Africa: Drone Imagery and Deep Learning Analysis for Targeted Vector Surveillance

Author:

Trujillano Fedra12ORCID,Jimenez Garay Gabriel13ORCID,Alatrista-Salas Hugo45ORCID,Byrne Isabel6ORCID,Nunez-del-Prado Miguel78ORCID,Chan Kallista69ORCID,Manrique Edgar1ORCID,Johnson Emilia2ORCID,Apollinaire Nombre10,Kouame Kouakou Pierre11,Oumbouke Welbeck A.612,Tiono Alfred B.9,Guelbeogo Moussa W.9,Lines Jo69ORCID,Carrasco-Escobar Gabriel113ORCID,Fornace Kimberly2914ORCID

Affiliation:

1. Health Innovation Laboratory, Institute of Tropical Medicine “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru

2. School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK

3. Department of Engineering and Computer Science, Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France

4. Escuela de Posgrado Newman, Tacna 23001, Peru

5. Science and Engineering School, Pontificia Universidad Católica del Perú (PUCP), Lima 15088, Peru

6. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK

7. Peru Research, Development and Innovation Center (Peru IDI), Lima 15076, Peru

8. The World Bank, Washington, DC 20433, USA

9. Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK

10. Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso

11. Institute Pierre Richet, Bouake 01 BP 1500, Côte d’Ivoire

12. Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, London L3 5QA, UK

13. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA

14. Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119077, Singapore

Abstract

Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d’Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs.

Funder

Sir Henry Dale fellowship

Wellcome Trust and Royal Society

BBSRC and EPSRC Impact Accelerator Accounts

CGIAR Research Program on Agriculture for Nutrition and Health

UK government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3