Evaluation and Comparison of Satellite-Derived Estimates of Rainfall in the Diverse Climate and Terrain of Central and Northeastern Ethiopia

Author:

Adane Girma BerheORCID,Hirpa Birtukan Abebe,Lim Chul-HeeORCID,Lee Woo-KyunORCID

Abstract

Understanding rainfall processes as the main driver of the hydrological cycle is important for formulating future water management strategies; however, rainfall data availability is challenging for countries such as Ethiopia. This study aims to evaluate and compare the satellite rainfall estimates (SREs) derived from tropical rainfall measuring mission (TRMM 3B43v7), rainfall estimation from remotely sensed information using artificial neural networks—climate data record (PERSIANN-CDR), merged satellite-gauge rainfall estimate (IMERG), and the Global Satellite Mapping of Precipitation (GSMaP) with ground-observed data over the varied terrain of hydrologically diverse central and northeastern parts of Ethiopia—Awash River Basin (ARB). Areal comparisons were made between SREs and observed rainfall using various categorical indices and statistical evaluation criteria, and a non-parametric Mann–Kendall (MK) trend test was analyzed. The monthly weighted observed rainfall exhibited relatively comparable results with SREs, except for the annual peak rainfall shifts noted in all SREs. The PERSIANN-CDR products showed a decreasing trend in rainfall at elevations greater than 2250 m above sea level in a river basin. This demonstrates that elevation and rainfall regimes may affect satellite rainfall data. On the basis of modified Kling–Gupta Efficiency, the SREs from IMERG v06, TRMM 3B43v7, and PERSIANN-CDR performed well in descending order over the ARB. However, GSMaP showed poor performance except in the upland sub-basin. A high frequency of bias, which led to an overestimation of SREs, was exhibited in TRMM 3B43v7 and PERSIANN-CDR products in the eastern and lower basins. Furthermore, the MK test results of SREs showed that none of the sub-basins exhibited a monotonic trend at 5% significance level except the GSMap rainfall in the upland sub-basin. In ARB, except for the GSMaP, all SREs can be used as alternative options for rainfall frequency-, flood-, and drought-monitoring studies. However, some may require bias corrections to improve the data quality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region

2. Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network

3. Global precipitation measurement

4. Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications;Hong,2018

5. Chapter 7-Challenges with availability and quality of climate data in Africa;Dinku,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3