Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network

Author:

Hong Yang1,Gochis David2,Cheng Jiang-tao1,Hsu Kuo-lin1,Sorooshian Soroosh1

Affiliation:

1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated against warm season precipitation observations from the North American Monsoon Experiment (NAME) Event Rain Gauge Network (NERN) in the complex terrain region of northwestern Mexico. Analyses of hourly and daily precipitation estimates show that the PERSIANN-CCS captures well active and break periods in the early and mature phases of the monsoon season. While the PERSIANN-CCS generally captures the spatial distribution and timing of diurnal convective rainfall, elevation-dependent biases exist, which are characterized by an underestimate in the occurrence of light precipitation at high elevations and an overestimate in the occurrence of precipitation at low elevations. The elevation-dependent biases contribute to a 1–2-h phase shift of the diurnal cycle of precipitation at various elevation bands. For reasons yet to be determined, the PERSIANN-CCS significantly underestimated a few active periods of precipitation during the late or “senescent” phase of the monsoon. Despite these shortcomings, the continuous domain and relatively high spatial resolution of PERSIANN-CCS quantitative precipitation estimates (QPEs) provide useful characterization of precipitation space–time structures in the North American monsoon region of northwestern Mexico, which should prove useful for hydrological applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3