Assessment of PERSIANN Satellite Products over the Tulijá River Basin, Mexico

Author:

Ceferino-Hernández Lorenza1,Magaña-Hernández Francisco2ORCID,Campos-Campos Enrique2,Morosanu Gabriela Adina3ORCID,Torres-Aguilar Carlos E.2ORCID,Mora-Ortiz René Sebastián2ORCID,Díaz Sergio A.2ORCID

Affiliation:

1. Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Ixtlahuaca, Estado de México 50200, Mexico

2. División Académica de Ingeniería y Arquitectura (DAIA), Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez km. 1, Cunduacán 86690, Mexico

3. Institute of Geography of the Romanian Academy, 12 Dimitrie Racoviță, Sector 6, 032993 Bucharest, Romania

Abstract

Precipitation is a fundamental component of the Earth’s hydrological cycle. Therefore, monitoring precipitation is paramount, as accurate information is needed to prevent natural hydrological disasters, such as floods and droughts. However, measuring precipitation using rain gauges is complicated due to their sparse spatial distribution. Satellite precipitation products (SPPs) are an alternative source of rainfall data. This study aimed to evaluate the performance of PERSIANN-CCS and PDIR-Now SPPs over the Tulijá River Basin (Chiapas, Mexico) using scatter plots, categorical statistics, descriptive statistics, and decomposing total bias. Additionally, bias correction was performed using the quantile mapping (QM) method. QM is a technique used to improve the fit of SPPs with respect to rainfall observations through a transfer function, aiming to reduce systematic errors in SPPs. The results indicate that the PDIR-Now product tends to overestimate rainfall to a large extent, thus showing better performance in detecting rain events. Meanwhile, PERSIANN-CCS underestimates precipitation to a lesser extent. The findings of this study demonstrate that correcting the bias of SPPs improves estimations of rainfall records, thereby reducing the percentage bias and root mean square error.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3