A Crop Modelling Strategy to Improve Cacao Quality and Productivity

Author:

Romero Vergel Angela Patricia,Camargo Rodriguez Anyela ValentinaORCID,Ramirez Oscar Dario,Arenas Velilla Paula Andrea,Gallego Adriana Maria

Abstract

Cacao production systems in Colombia are of high importance due to their direct impact in the social and economic development of smallholder farmers. Although Colombian cacao has the potential to be in the high value markets for fine flavour, the lack of expert support as well as the use of traditional, and often times sub-optimal technologies makes cacao production negligible. Traditionally, cacao harvest takes place at exactly the same time regardless of the geographic and climatic region where it is grown, the problem with this strategy is that cacao beans are often unripe or over matured and a combination of both will negatively affect the quality of the final cacao product. Since cacao fruit development can be considered as the result of a number of physiological and morphological processes that can be described by mathematical relationships even under uncontrolled environments. Environmental parameters that have more association with pod maturation speed should be taken into account to decide the appropriate time to harvest. In this context, crop models are useful tools to simulate and predict crop development over time and under multiple environmental conditions. Since harvesting at the right time can yield high quality cacao, we parameterised a crop model to predict the best time for harvest cacao fruits in Colombia. The cacao model uses weather variables such as temperature and solar radiation to simulate the growth rate of cocoa fruits from flowering to maturity. The model uses thermal time as an indicator of optimal maturity. This model can be used as a practical tool that supports cacao farmers in the production of high quality cacao which is usually paid at a higher price. When comparing simulated and observed data, our results showed an RRMSE of 7.2% for the yield prediction, while the simulated harvest date varied between +/−2 to 20 days depending on the temperature variations of the year between regions. This crop model contributed to understanding and predicting the phenology of cacao fruits for two key cultivars ICS95 y CCN51.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3