Fewer pests and more ecosystem service‐providing arthropods in shady African cocoa farms: Insights from a data integration study

Author:

Jarrett Crinan123ORCID,Cyril Kowo34,Haydon Daniel T.1ORCID,Wandji Christel Alain35,Ferreira Diogo F.367ORCID,Welch Andreanna J.38,Powell Luke L.13678ORCID,Matthiopoulos Jason1ORCID

Affiliation:

1. School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences University of Glasgow Glasgow UK

2. Bird Migration Unit Swiss Ornithological Institute Sempach Switzerland

3. Biodiversity Initiative Belmont Massachusetts USA

4. Department of Microbiology and Parasitology University of Buea Buea Cameroon

5. Department of Animal Biology and Physiology, Faculty of Sciences University of Yaoundé I Yaoundé Cameroon

6. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Universidade do Porto Vairão Portugal

7. BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Vairão Portugal

8. Department of Biosciences Durham University Durham UK

Abstract

Abstract Agricultural intensification is leading to conversion of cocoa agroforestry towards monocultures across the tropics. In the context of cocoa agriculture, arthropods provide a range of ecosystem services and dis‐services. Arthropod pests (e.g., mirids and mealybugs) can cause major damage to crops, whilst pollinators and natural enemies (e.g., predatory insects and parasitoids) have the potential to enhance agricultural yields. Understanding how intensification of cocoa farming affects different arthropod groups is therefore important in maximising the abundance of beneficial arthropod taxa and reducing pest burdens. However, little is known about the influences of agricultural intensification on tropical arthropod communities, especially in Africa, where ~70% of the world's cocoa is produced. Most research on arthropod communities considers data from different sampling methods separately, as proxies of abundance; whilst these proxies can be informative, estimating true abundance enables direct comparison between arthropod taxa, and therefore the study of community dynamics. Here, we develop a Bayesian hierarchical model that integrates data from three common arthropod survey techniques to estimate population size of arthropod orders and to investigate how arthropod community composition responds to farm shade cover (an indicator of management intensity). Our results show that eight of 11 arthropod taxa responded to farm shade cover; importantly, brown capsids (the primary pest of cocoa in Africa), Coleoptera pests and Hemiptera pests decreased with increasing farm shade cover, whilst Araneae (natural enemies) and Diptera (potential pollinators) were more abundant in shady farms. Synthesis and applications. To achieve lower pest burdens and higher abundances of potential pollinators and natural enemies, African cocoa farms should maintain a dense canopy of shade trees. The current shift towards high‐intensity cocoa farming in Africa could result in long‐term losses due to pest infestations and loss of arthropod‐mediated ecosystem services.

Funder

Royal Society of Edinburgh

Publisher

Wiley

Subject

Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3