A Locus Controlling Leaf Rolling Degree in Wheat under Drought Stress Identified by Bulked Segregant Analysis

Author:

Yang Xi,Wang JingyiORCID,Mao XinguoORCID,Li ChaonanORCID,Li Long,Xue Yinghong,He Liheng,Jing RuilianORCID

Abstract

Drought stress frequently occurs, which seriously restricts the production of wheat (Triticum aestivum L.). Leaf rolling is a typical physiological phenomenon of plants during drought stress. To understand the genetic mechanism of wheat leaf rolling, we constructed an F2 segregating population by crossing the slight-rolling wheat cultivar “Aikang 58” (AK58) with the serious-rolling wheat cultivar ″Zhongmai 36″ (ZM36). A combination of bulked segregant analysis (BSA) with Wheat 660K SNP Array was used to identify molecular markers linked to leaf rolling degree. A major locus for leaf rolling degree under drought stress was detected on chromosome 7A. We named this locus LEAF ROLLING DEGREE 1 (LERD1), which was ultimately mapped to a region between 717.82 and 720.18 Mb. Twenty-one genes were predicted in this region, among which the basic helix-loop-helix (bHLH) transcription factor TraesCS7A01G543300 was considered to be the most likely candidate gene for LERD1. The TraesCS7A01G543300 is highly homologous to the Arabidopsis ICE1 family proteins ICE/SCREAM, SCREAM2 and bHLH093, which control stomatal initiation and development. Two nucleotide variation sites were detected in the promoter region of TraesCS7A01G543300 between the two wheat cultivars. Gene expression assays indicated that TraesCS7A01G543300 was higher expressed in AK58 seedlings than that of ZM36. This research discovered a candidate gene related to wheat leaf rolling under drought stress, which may be helpful for understanding the leaf rolling mechanism and molecular breeding in wheat.

Funder

National Natural Science Foundation of China

Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau

National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3