Plantlet Anatomy of Silver Birch (Betula pendula Roth.) and Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Shows Intraspecific Reactions to Illumination In Vitro

Author:

Zeps MārtiņšORCID,Kondratovičs Toms,Grigžde Elva,Jansons Āris,Zeltiņš PaulsORCID,Samsone Ineta,Matisons RobertsORCID

Abstract

Micropropagation of forest reproductive material is becoming an increasingly important tool of climate-smart forest management, whose efficiency is depending on artificial illumination, which in turn can have species-specific effects. To improve the energy-efficiency of micropropagation, light emitting diodes (LED) are becoming more popular; however, they emit light of narrow spectral composition, synergic effects of which can alter plantlet development. Regarding the in vitro cultures of trees, such effects have been scarcely studied. In this study, three clones of silver birch (Betula pendula Roth.) and three clones of hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) from the eastern Baltic region were tested. The responses of leaf and stem anatomy of in vitro cultures to three LED light illumination treatments differing by spectral composition and to illumination by fluorescent tubes were estimated by linear (mixed) models. The studied light treatments had non-interacted effects on stomata density and on the secondary xylem cell wall in the stem of silver birch and in the stomata length, stem radius, and phloem width of hybrid aspen. Furthermore, clone-specific responses to illumination were observed for number of chloroplasts and phloem width of silver birch and for leaf thickness and xylem cell wall thickness of hybrid aspen, implying different mechanisms of shade avoidance. In general, the responses of plantlet anatomy differed according to the width of the light spectrum in case of LED, as well as for fluorescent tubes. Considering the legacy effects of early development of plantlets, adaptability of illumination in terms of spectral composition according to the requirements of genotypes appear highly beneficial for micropropagation of sustainable forest reproductive material.

Funder

European Regional Development Fund project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference98 articles.

1. Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change;Konnert,2015

2. Genetic Aspects in Production and Use of Forest Reproductive Material: Collecting Scientific Evidence to Support the Development of Guide-Lines and Decision Support Tools;Gömöry,2021

3. Hartmann and Kester’s Plant Propagation: Principles and Practices;Hartmann,2002

4. LED Lighting in Horticulture

5. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3