Effect of different led spectrum regimens on growth and development of Betula pubescens Ehrh. and Rubus idaeus L. in culture in vitro

Author:

Evlakov Petr1,Grodeckaya Tatyana2,Fedorova Olga3,Shestakov Roman4,Baranov Oleg5

Affiliation:

1. FGBOU VO Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet im.G.F. Morozova

2. Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet im. G.F. Morozova

3. Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet imeni G.F. Morozova

4. Voronezh State University of Forestry and Technlogy named after G.F. Morozov

5. Nacional'naya akademiya nauk Belarusi

Abstract

Light-emitting diodes (LEDs) have shown high efficiency in growing plants both in vivo in greenhouses and in vitro, including clonal micropropagation. The purpose of this study was to analyze the effect of the spectral composition of LED irradiators with different proportions of red (RL) and blue (BL) light on the morphogenesis of microplants of the remontant form of common raspberry (Rubus idaeus L.) cv. Hercules and the selection valuable cultivar of downy birch (Betula pubescens Ehrh.), which is the object of a unified genetic breeding complex (UGBC), previously selected on the basis of drought resistance. In the variant 1, the RL/BL ratio was 80/20%, in the variant 2 it was 70/30%, in the control it was 50/50%. The LED in variant 1 contributed to the greatest increase in morphometric and anatomical characteristics in raspberry microplants, increasing the height of shoots, the number of leaves, stomata density, the height of the leaf epidermis and mesophyll. At the same time, an increase in the proportion of RL/BL led to an increase in the leaf area, leaf surface, and stomatal density in birch microclones; however, the anatomical characteristics of the leaf indicate a decrease in the height of epidermal cells and the size of mesophyll cells. Thus, the LED of option 1 can be recommended for use in clonal micropropagation of raspberries in greenhouses, to optimize growth processes and obtain healthy, normally formed plants, while birch requires additional selection of optimal spectral illumination conditions.

Publisher

Voronezh State University of Forestry and Technologies named after G.F. Morozov

Subject

General Medicine

Reference45 articles.

1. Dutta Gupta S. Light emitting diodes for agriculture. Singapore Springer Nature Singapore Pte Ltd, Singapore. 2017: 334. DOI: https://doi.org/10.1007/978-981-10-5807-3., Dutta Gupta S. Light emitting diodes for agriculture. Singapore Springer Nature Singapore Pte Ltd, Singapore. 2017: 334. DOI: https://doi.org/10.1007/978-981-10-5807-3.

2. Landi M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S. I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2020; 1861: 148131. DOI: https://doi.org/10.1016/j.bbabio.2019.148131., Landi M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S. I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2020; 1861: 148131. DOI: https://doi.org/10.1016/j.bbabio.2019.148131.

3. Batista D. S., Felipe S. H. S., Silva T. D. (et al.). Light quality in plant tissue culture: does it matter? In Vitro Cellular & Developmental Biology-Plant. 2018; 54(3): 195-215. DOI: https://doi.org/10.1007/s11627-018-9902-5., Batista D. S., Felipe S. H. S., Silva T. D. (et al.). Light quality in plant tissue culture: does it matter? In Vitro Cellular & Developmental Biology-Plant. 2018; 54(3): 195-215. DOI: https://doi.org/10.1007/s11627-018-9902-5.

4. Voitsekhovskaja O. V. Phytochromes and other (photo) receptors of information in plants. Russ. J. Plant Physiol. 2019; 66(3): 351-364. DOI: https://doi.org/10.1134/s1021443719030154., Voitsekhovskaja O. V. Phytochromes and other (photo) receptors of information in plants. Russ. J. Plant Physiol. 2019; 66(3): 351-364. DOI: https://doi.org/10.1134/s1021443719030154.

5. Zakurin A. O., Shchennikova A. V., Kamionskaya A. M. Artificial-Light Culture in Protected Ground Plant Growing: Photosynthesis, Photomorphogenesis, and Prospects of LED Application. Russ. J. Plant Physiol. 2020; 67: 413-424. DOI: https://doi.org/10.1134/s102144372003022x., Zakurin A. O., Shchennikova A. V., Kamionskaya A. M. Artificial-Light Culture in Protected Ground Plant Growing: Photosynthesis, Photomorphogenesis, and Prospects of LED Application. Russ. J. Plant Physiol. 2020; 67: 413-424. DOI: https://doi.org/10.1134/s102144372003022x.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3