LED Lighting in Horticulture

Author:

Morrow Robert C.

Abstract

Solid-state lighting based on the use of light-emitting diodes (LEDs) is potentially one of the biggest advancements in horticultural lighting in decades. LEDs can play a variety of roles in horticultural lighting, including use in controlled environment research, lighting for tissue culture, and supplemental and photoperiod lighting for greenhouses. LED lighting systems have several unique advantages over existing horticultural lighting, including the ability to control spectral composition, the ability to produce very high light levels with low radiant heat output when cooled properly, and the ability to maintain useful light output for years without replacement. LEDs are the first light source to have the capability of true spectral composition control, allowing wavelengths to be matched to plant photoreceptors to provide more optimal production and to influence plant morphology and composition. Because they are solid-state devices, LEDs are easily integrated into digital control systems, facilitating special lighting programs such as “daily light integral” lighting and sunrise and sunset simulations. LEDs are safer to operate than current lamps because they do not have glass envelopes or high touch temperatures, and they do not contain mercury. The first sustained work with LEDs as a source of plant lighting occurred in the mid-1980s to support the development of new lighting systems to be used in plant growth systems designed for research on the space shuttle and space station. These systems progressed from simple red-only LED arrays using the limited components available at the time to high-density, multicolor LED chip-on-board devices. As light output increases while device costs decrease, LEDs continue to move toward becoming economically feasible for even large-scale horticultural lighting applications.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3